A unified theory for the energy cost of legged locomotion.
نویسنده
چکیده
Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation-Relaxation and Cross-bridge cycling. A mathematical model incorporating these costs explains observed patterns of locomotor cost both within and between species, across a broad range of animals (insects to ungulates), for a wide range of substrate slopes including level running and vertical climbing. This ARC model unifies work- and force-based models for locomotor cost and integrates whole-organism locomotor cost with cellular muscle physiology, creating a predictive framework for investigating evolutionary and ecological pressures shaping limb design and ranging behaviour.
منابع مشابه
Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملAn analytical estimation of the energy cost for legged locomotion.
Legged locomotion requires the determination of a number of parameters such as stride period, stride length, order of leg movements, leg trajectory, etc. How are these parameters determined? It has been reported that the locomotor patterns of many legged animals exhibit common characteristics, which suggests that there exists a basic strategy for legged locomotion. In this study we derive an eq...
متن کاملSemi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation
The research on the principles of legged locomotion is an interdisciplinary endeavor. Such principles are coming together from research in biomechanics, neuroscience, control theory, mechanical design, and artificial intelligence. Such research can help us understand human and animal locomotion in implementing useful legged vehicles. There are three main reasons for exploring the legged locomot...
متن کاملEnergy Analysis of Multi-Legged Locomotion Systems
This paper presents the energy analysis of periodic gaits for multi-legged locomotion systems. The main purpose is to determine the system performance during walking and the best set of locomotion variables that minimizes a cost function related to energy. For that objective, the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, du...
متن کاملA Hybrid Dynamical Systems Theory for Legged Locomotion
A Hybrid Dynamical Systems Theory for Legged Locomotion
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biology letters
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2016